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ABSTRACT

The Orbifold Landau-Ginzburg Conjecture for Unimodal and Bimodal Singularities

Natalie Bergin
Department of Mathematics

Master of Science

The Orbifold Landau-Ginzburg Mirror Symmetry Conjecture states that for a quasi-
homogeneous singularity W and a group G of symmetries of W, there is a dual
singularity W7 and dual group GT such that the orbifold A-model of W/G is iso-
morphic to the orbifold B-model of W7 /GT. The Landau-Ginzburg A-model is the
Frobenius algebra J#y ¢ constructed by Fan, Jarvis, and Ruan, and the B-model is
the Orbifold Milnor ring of W?. The unorbifolded conjecture has been verified for
Arnol’d’s list of simple, unimodal and bimodal quasi-homogeneous singularities with
G the maximal diagonal symmetry group by Priddis, Krawitz, Bergin, Acosta, et
al. [9], and by Fan-Shen [4] and Acosta [1] for all two dimensional invertible singu-
larities and by Krawitz for all invertible singularities of 3 dimensions and greater in
[8]. Based on this Krawitz posed the Orbifold Landau-Ginzburg Mirror Symmetry
Conjecture, where the A-model is still the Frobenius algebra .7y constructed by
Fan, Jarvis, and Ruan but constructed with respect to a proper subgroup G of the
maximal group of symmetries Gy and the B-model is the orbifold Milnor ring of W7
orbifolded with respect to a non-trivial group K in SL,, of order [Gy : (J)]. I verify

this. Orbifold Landau-Ginzburg Mirror Symmetry Conjecture for all unimodal and
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bimodal quasi-homogeneous singularities in Arnol’d’s list with G = (J) < Gy, being
the minimal admissible diagonal symmetry group. I also discuss some axioms and

properties of these singularities.
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1 Introduction

1.1 Background and Motivation

In developing models in string theory, one often comes to a point where one must
make an arbitrary choice between two alternatives. The two choices may lead to
very different mathematical constructions—usually called an A-model and a B-model,
and yet, since the choices are arbitrary, we expect the physics they describe to be
the same. That means many of the final mathematical objects that are constructed

should be equal, or isomorphic, or otherwise equivalent.

This phenomenon has led to many exciting new discoveries in algebraic and differ-
ential geometry. One such discovery is mirror symmetry. There are several types
of mirror symmetry, but we are interested in the so-called Berglund-Huebsch mirror

symmetry involving Landau-Ginzburg models.

The Landau-Ginzburg B-model is very well understood. Among other things, it takes
a quasi-homogeneous polynomial, a polynomial with “weights” for each variable re-

sulting in each term having “weighted” degree 1, with isolated singularities and asso-

ow
ciates to it the “Chiral ring”, which is simply the Milnor ring C[zy, ..., x,]/ (8 )
Z;

of the singularity W.

Until very recently, no one knew how to construct the LG A-model mathematically.
But in [5] the LG A-model was finally put on a solid mathematical foundation and
many aspects of it were finally understood. Among other things, this A-model asso-
ciates a ring to each quasi-homogeneous singularity called the FJRW ring. Both this

FJRW ring and the (B-model) chiral ring are actually Frobenius algebras.
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The general philosophy of mirror symmetry suggests that for a large class of polyno-
mials W, there should be a corresponding mirror polynomial W7 so that the A-model
of one is isomorphic to the B-model of the other. In the case of the B-model chiral
ring and the A-model FJRW ring, the obvious conjecture is that for a large class of
polynomials W, there is a choice of a mirror dual W7 so that (W7)? = W and such
that there is an isomorphism of Frobenius algebras between the FJRW ring of W and
the chiral ring of W7. Berglund and Huebsch described a construction of W7 for

certain polynomials that was conjectured to provide the mirror dual.[3]

This conjecture was verified by Acosta in [1], Fan-Shen in [4] and Krawitz in [8]. That
is, it was proved that the FJRW ring of W was isomorphic to the chiral (Milnor) ring
of WT and conversely. However, one key property of the A-model is that it depends
not only on the singularity W but also on a group of admissible symmetries GG. The
FJRW ring actually depends heavily on the choice of the group G and in fact is graded
by G.

The conjecture that was proved by Krawitz et al. was for the maximal symmetry
group of W but did not involve any group on the B-side. However, recently an in-
teresting physically motivated construction called “orbifolding” has been developed
by Kaufmann and Krawitz for the B-side in [8]. For certain choices of a group of
symmetries G of W, it constructs an orbifolded Chiral ring (orbifolded Milnor ring)
which is graded by the group G. If the group is the trivial group, the construction

reduces to the usual chiral (Milnor) ring.

Krawitz conjectured that for all the singularities that have an unorbifolded dual W7
described by Berglund-Huebsch and for all admissible groups G, there should be
a-dual-group-GL-so-that-the (A-model) FJRW ring for W and G is isomorphic as

2
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a Frobenius algebra, to the orbifolded (B-model) Chiral ring for W7 orbifolded by G*.

In this paper I verify this conjecture for all unimodal and bimodal singularities with

the minimal admissible group (.J).

1.2 Overview of Results

In this paper I verify the Orbifold Landau-Ginzburg Mirror Symmetry Conjecture for
Arnol’d’s list of unimodal and bimodal singularities where G = (J) < Gy [2] based

on certain restrictions to the correlators. These singularities are

Unimodal Singularities:

B o 2+ ¢+ 2 +aryz
Xo o a4yt +baty?
Q12 : .’173 + y5 + y2’2

U12 . x3+y3—|—z4

Bimodal Singularities:

Ziy o 2yt

Q20 z® + zyt + y2?
Sio : 2Pz4uylt+9°
Ug : =2+z22+ y5

Qs @ TP +yL+y
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The original “unorbifolded” conjecture was proven for the simple and parabolic sin-
gularities in [5] and in [9] for Arnol’d’s list of unimodal and bimodal singularities.
As mentioned above, the complete conjecture was later proved by Fan-Shen, Acosta,

and Krawitz in [1, 4, 8].

2 Construction

2.1 Review of Construction

For this paper W will always be a non-degenerate, quasi-homogeneous, invertible

polynomial in variables x1,xs, ..., xN.

Definition 2.1.1. A gquasi-homogeneous polynomial W is a polynomial with weights

Quys Qg - - - 5 Gz, i1 QN (0, 1) such that any scalar A € C* satisfies

W()\qzlilil, )\qz2l'2, R ,)\qz”xn) = )\W(Clll, T, ... ,ZEn)-

For example, the singularity known as Q5 ¢, defined by the polynomial z3 + zy* +y22,

has weights ¢, = 3,q, = 3. ¢: = -

Definition 2.1.2. Non-degeneracy of a quasi-homogeneous polynomial requires that
e the weights be uniquely determined
e there is an isolated singularity at the origin.

Each quasi-homogeneous polynomial W determines a matrix of exponents Byy .

Definition 2.1.3. The ij entry of the By, matriz is the exponent of x; from the i-th
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When the number of monomials equals the number of variables, the matrix By, is
square, and because of the non-degeneracy condition, By, is invertible. In this case,
rescaling the variables allows us to assume that all non-zero coefficients are 1, so
the matrix completely determines the polynomial up to rescaling. As an example of
this matrix representation W « By, the singularity Q2 : 2 + zy* + y2? has as its

corresponding matrix

3 00
1 40
01 2

Definition 2.1.4. When W has the same number of variables as monomials, i.e.,

when By is square, we say that W is wnvertible.

Remark 2.1.5. It is known that when the weights are uniquely determined (as in

our case), By has maximal rank, so By is an invertible matrix when it is square.

When W is invertible, the transpose matrix Bl corresponds to a different quasi-
homogeneous polynomial. This new polynomial will be denoted W7. Often W7 also

has an isolated singularity at the origin.

Remark 2.1.6. For any invertible singularity, we can rescale the variables so that all

non-zero coefficients are 1. Throughout this paper we will always make this rescaling.

Definition 2.1.7. For any invertible singularity W, the Berglund-Huebsch dual W7
is defined to be the polynomial with monomials determined by B” (and with all

non-zero coefficients equal to 1).

For example, (1 gives

T
300 310
Bho=11 40| =[0 41
01 2 00 2
5
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thus Q3 : 2%y +y'z + 2%

We need the Jacobean ideal to define both the A-model and the B-model rings.

Definition 2.1.8. The Jacobian ideal J is defined by

Oxy’ Oz’ Oay

j:(aw ow 8W>.

Definition 2.1.9. The Hessian of W is defined by

hess(IV) = det (24 )

Definition 2.1.10. The Milnor ring 2y of W, is defined to be
2y = Clxy, x9,...,2n]/T.

Qyy is finite dimensional as a vector space over C and the dimension as seen in [2] is
N
1
=1 NG

This ring 2y is graded by weighted degree. The elements of the top degree form a
one-dimensional subspace generated by hess(W). [9]

2w has a residue pairing (f, g) defined by

fg= Mhess(W) + lower order terms.

o
for f,g € Q.

For Qg we see J = (322 + y*, 4zy® + 2%, 2y2) and so

_ _ 2 2 .3 2 2 2 2 2 2
2 _<17x7'r7y7y7yaz7zaxyaxynyumyaxzumz>'
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Definition 2.1.11. A Frobenius algebra is an algebra with a non-degnerate pairing (, )

with the property that for all «, 3,y elements of the algebra we have (a3, ) = («, 57).

The Milnor ring with its residue pairing forms a graded Frobenius algebra.[9].
We will now define the construction of the (A-model) FJRW ring. To do this, we
first need to choose an admissible group of diagonal symmetries. The choice of group

determines the structure of the FJRW ring.

Definition 2.1.12. The mazimal group of diagonal symmetries is given by

GW = {(061,()42,...,04]\[) - (C*)N | W(OélIl,OQﬁQ,--',OéNfEN) = W($1,$2,..-,$N)}.

Definition 2.1.13. For a quasi-homogeneous polynomial with weights {¢., },the ez-

ponential grading element is J = (e2™4=1 *Mitez  e2Tian )

Gw always contains the exponential grading element. In [9] the maximal symmetry
group Gy was always used and corresponds on the B-side to the trivial group (the
“unorbifolded” case). It is known that the group (J) is always admissible [5]. The
computations in this paper always will use the cyclic group (J) generated by the

exponential grading element.

Recall Krawitz conjectured that for all the singularities that have an unorbifolded dual
WT described by Berglund-Huebsch and for all admissible groups G, there should be
a dual group G7 so that the (A-model) FJRW ring for W and G is isomorphic as a

Frobenius algebra, to the orbifolded (B-model) Milnor ring.

Definition 2.1.14. For h € G, Fixh C CV is the fized locus of h. The dimension of

this fixed locus will be denoted as NVj,.
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Definition 2.1.15. For any admissible group GG and for each h € G we define
A = QW|Fixh twW
where w = dz;;, Adxy, \--- Ndz; ¥, is the natural choice of volume form.

Note: The FJRW construction uses middle-dimensional relative homology of a Milnor

fibration, but that construction is isomorphic to this one.

Definition 2.1.16. Choose a cyclic admissible group G < Gy with generator a. If
Fiz(a*) = {0} then we define

e, =1€ 5 =C,
and if Fixa* = Cx;, @ --- @ Cux;,, define
er = dwgy Ndwg, N+ Ndrg, € Hg.

Note that for a = J we have Fix(J') = {0}.

5

Consider Q9 again where G = (J) = <(62’”%, e2mis e%iﬁ)>.

2 2
e, Teo, T2eq, yeo, Y2eo, yieq, zeq, 22eg, wyey, vy’ eq, 12yeq, x2y’eq, vz€0, 122€0)
es, Tes, Teg, Yeg, Y es, Yies, Tyes, Ty eq, 12yes, x2y eq)
€k, TEL)

K
=
(
| (o)

The group G acts on %, by acting on the coordinates. We define the h-sector F° to

invariants of J#,. The underlying vector space, often called

8

k=0
k=6
k=3,9
otherwise.
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the state space, of the FJRW-ring is defined to be

heG

Ay = (@ %) ) :

. . _ 3
For @, this vector space is 7, , 5y = (1, €2, €4, €5,y €6, TYes, €7, €8, €10, €11).

Definition 2.1.17. For each h € G we define ©F € QN [0, 1) by the fact that h can

be uniquely expressed as

b= ( 627ri@h 2miOk

2miOn
le s, €5TON)

Having considered © we can now talk about the W-degree of an element.

Definition 2.1.18. For any h € G and and «y, in the h-sector HY, the W -degree of

ay, is defined by

degy (ap) == N + 2 Z(@;‘ - qj) (1)
when oy, € (54,)°.

The space 4y, is a complex vector space that is Q-graded by this W-degree. Clearly
the W-degree only depends on the G-grading.
Now we wish to define a pairing on the state space 4y . To do this, note first that

we have an isomorphism [ : 74, — J7;,-1.

Definition 2.1.19. Define a pairing on 4% @ H, by (a, I71(3)) for a € J° and
ERS ijﬁl, and extend the pairing linearly to all of Hy . It can be shown that this

pairing is non-degenerate on &y .

For a given choice of basis we denote by 7, 3 the matrix representation of the pairing
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The multiplication for the Frobenius algebra is determined by the FJRW cohomologi-
cal field theory.[5] This field theory produces classes AY, (ay, s, ..., 0n) € H* (M 41)
where %g,n is the stack of stable curves of genus g with n marked points. The classes

A}, have complex codimension D for each n-tuple (aq, s, ..., o) € (Hy,a)" where

n

R 1
D:=¢w(g—1)+ 5 Zdegw(ai)

=1

and where

We do not need the entire cohomological field theory to define the FJRW ring, but we
can use the genus-zero, three-point classes to define correlators which will determine

the structure constants of the algebra.

Definition 2.1.20. We define the three-point correlators as follows:

(041;0427063>gv = / A(%(Oéha%@?,)-
Mo,3

It is easy to see that (ay, s, as) is nonzero only when its codimension D is zero
because .# 5 is a point.

When g = 0 and n = 3, then D = 0 if and only if Z?:1 degy, o = 2¢y.

The ring structure is given by these three-point correlators. Given r, s € J&y ¢, their

product is defined to be

rxSs = Z (r,s,a)n®’p (2)

a,B

where the sum is taken over all choices of o and [ in a fixed basis of 4y, ¢.[5]

In [5] it is proved that the classes Ag‘fn satisfy certain axioms that facilitate their

ion. Be e.provide a simplified form of these axioms that applies in the

10
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cases that we need to compute.

Axiom 1. Dimension: If D ¢ 37, then Ay (1,0, ... ) = 0. Otherwise, D is
the complex codimension of the class A‘g/‘fn(al, Qg ...,ap). In particular, if g =0 and

n =3, then {ay,az, az) = 0 unless D = 0.

Axiom 2. Symmetry: Let o € S3. Then

(a1, s, as) = (1), Ao(2), Ao(3))

The next few axioms rely on the degrees of line bundles .}, ..., %y endowing an
orbicurve with a so-called W -structure; however, this can be reduced to a simple
numerical criterion. Consider the class AV (a1, aq,...,0p), with o € (J4,)¢ for
each j. For each variable z;, define {; by

k

li=q(29—2+k) - O

i=1

Axiom 3. Integer degrees: Ifl; ¢ 7 for somej € {1..., N}, then A}, (a1, s, ..., an) = 0.

Axiom 4. Concavity: If l; <0 for all j € {1,2,3}, then (aq, s, a3) = 1.

The next axiom is related to the Witten map:

N N
WPt — Pt
j=1 j=1

(W W W
N 81'1,8%27.”,3561\[

where hY and hj are defined by

0 lfl]<0
L+1 il >0
11
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)l if 1, <0

0 ifl; >0
so that both are non-negative integers satisfying h? — hjl- = l; + 1. The fact that the
Witten map is well-defined is a consequence of the geometric conditions on the .Z;

considered in [5]. For further details, we refer readers to the original paper.

In M yp, it AV (c1,0qs,...,a,) is a class of codimension zero, then these classes are
) g,n
constant and so, abusing notation, we will simply consider Agf’n(al, Qg,...,0p) to be

a complex number. We will use this convention through the rest of the thesis.

Axiom 5. Index Zero: Consider the class Agf/n(al,ag, co ), with o € JE, 6. If

Fixvy; = {0} for each i € {1,2,...,n} and

N
E : 0 31
(hj - h]) =0,
i=1
then Ny, (oq, s, ..., ap) is of codimension zero, and A;’E’n(al, g, ..., 0p) 1S equal to

the degree of the Witten map.

Axiom 6. Composition: If the four-point class Agf’n(al,az, as, ay) is of codimension

zero, then it decomposes as sums of three-point correlators in the following way:

A(‘)/[’/zl(al7 g, (3, 0[4) - Z <Oél, g, /8> ’r]ﬂ’d <57 asg, Oé4> - Z <Oél, Qag, /8> Irlﬂ,s <57 Ao, Oé4> .
B,6 8,6

Note that FixJ = {0} so 55 = C. Let 1 be the element in J#; corresponting to

1 € C. This element has degy, (1) = 0 and it turns out to be the identity element in

the FJRW-ring. The next axiom deals with this element.
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Axiom 8. Sums of singularities: If Wy € Clxy,...,x.] and Wy € Cly, ..., ys] are
two non-degenerate, quasi-homogeneous polynomials with maximal symmetry groups
G1 and Go, then the maximal symmetry group of W = Wi+ Wy is G = G X G, and

there is an 1somorphism of Frobenius algebras

%W,G = <%VVLGwl ® %W27GW2

2.2 Orbifolded B-model construction

In the original “unorbifolded” Landau-Ginzburg conjecture the B-model of a singu-
ow
ox;
ring is the same as orbifolding by the trivial group. Orbifolding for the B-models is

larity W is simply the Milnor ring of W, that is Clzy, ..., x,]/ ( > This Milnor
a very similar construction for the FJRW-ring of the A-model. First we must choose
a group K such that K < Gw N SL, and find the fixed locus of every element in
K. Restricting W to each fixed locus we can find the Milnor ring of that restriction.
Using the same K-action as in the A-model, one may compute invariants of each of
these restricted Milnor rings and sum these sectors over all the elements in K. This
will give us the underlying vector space of the B-model orbifolded chiral ring, but we

still need to define the multiplication in this new algebra.

2.2.1 Orbifold B-side multiplication

As discussed earlier, although the B-side as a vector space has been around for some
time, its structure as a ring has only recently been developed. This section describes
the B-side multiplication which was investigated in general by Kaufmann [6] and ex-

plicitly written out by Marc Krawitz in [8].

The underlying vector space of the Landau-Ginzburg orbifold B-model of W/G is
defined to be

13
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o= 9,

geK
where Q is a G-graded C-vector space.

Now we are ready to define the multiplication on the B-model orbifolded chiral ring.

Definition 2.2.1. For g € K, let I, = {i|g; = 1,} and when let N, := dim(Fix(g)).

HessW |pix(g .
~ HeSSW|Fix(g)OFix(h) _ Wi‘(g(h)h)) If IgUIhUIgh = {1,2,...,n}
9" dim(Fix(g) N Fix(h))

0 otherwise.

where Ijle;s =1if Fix=0.
S0 7., is given by the determinant of the hessian of W on the newly fixed locus,
provided each variable is fixed by at least one of g, h and gh. If ¢ = id or h = id the
newly fixed locus is empty then by convention the determinant of the empty (0 x 0)

matrix is 0.

Let b, denote the element 1 in the milnor ring Q).

Definition 2.2.2. We define the multiplication of the elements b, and b, € 2 by

by * by, = Y4,nbgn, and extend to the rest of 2 in the obvious way.

Note that if e € K is the identity in K then b, is the multiplicative identity for this

multiplication. This follows from the fact that

Ye,g = 1= Yg,e-

This multiplication is associative, which was proved by Kaufmann in [6]-[7]. It suffices

to check vy nVgnk = Vg, hkVh k-

The orbifolded Milnor ring of Q7 : 2%y + y'z + 2* is
(bo, zbo, 7o, y*bo, TYbo, y* 2bo, TY by, y2bo, TY 2bo, b1 )

As an isamultiplication where (J)" = ((a, @, 1)) when a? = 1 consider
14
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b1 * b1 = ’71,11)0 where

HeSSQ%:o|Fix((a,a,l))ﬁFix((a,a,1)) _ HeSSQ%:o|Fix((a,a,1)(a,a,1))
T gim(Fix((a, v, 1)) N Fix((av, o, 1))) dim (Fix((a, o, 1) (v, av, 1))
Hesng,O . _ HeSSQzT,o |cs
Ml 4im(C, NC,) —  dim(C9)
Hesng,O . _ HeSSQzT,o |c2
711 1 = 3
40813 2
M2 = —5—
3
2042132
7,1 = —3

SO b1 * bl = ’7171b0 = 2%;4$y32b0.

2.3 Additional Notation

This paper discusses the Orbifold Landau-Ginzburg mirror symmetry conjecture for
the invertible unimodal and bimodal singularities where the A side is orbifolded by

G = (J) and the B side is orbifolded by GT NSL,,, where |G| = [Gw : (J)].

Definition 2.3.1. A loop and a chain are polynomials defined as

. a a a
Wioop := 7' T + x5°w3 + - - + 23" 11

a a
Wehain = 7' T2 + 25°x3 + - - - + 27"

Definition 2.3.2. A singularity is ¢rreducible if the polynomial associated to it is a

loop or a chain.

Proposition 2.3.3. The maximal symmetry group Gyw is cyclic when W is an irre-

invertible non-degenerate singularity.

15

www.manharaa.com



Proof. Since the singularity is irreducible it must either be a loop or a chain. Notice

that the only difference between the loop and the chain is the last term.
Choose a (01, B2, ..., Bn) € Gw. By definition of Gy we have

W (G121, Batay . . ., Buxn) = W(xy, 2o, ..., x,). Therefore 8" 3;11 = 1 for every 1<i<

i— 1
n — 1. Using this we can get each (; entirely in terms of 3, by 3; = 3, =D

_ n—1 —1)n—1
O(ﬁl?ﬂ??"'aﬂn): (ﬁl?ﬁl a17 ?1a27"'a {Ik:l( ) ak)'

For a loop 3 € C* has order that divides |14 (—=1)" "' [],_, axl-

For a chain (3; € C* has order that divides HZ:l ag.

Let oy € C* have order |1+ (—=1)"'[],_, ax| for a loop and have order [],_, ax for

1 _
aiaz [ =n» 1ak)
1

a chain. Clearly (al, a; ™ aft' ™« is an element of Gyy.

We can see that (3; would have to be some power g of oy, giving

a aia ":1 —1)n—1
(ﬂl,ﬂg,...,ﬁn) — (51751 1;612---,51’“’1( ) ak)
- (a L (af)mee, ... (a")Hz;%(—l)"-lak)
- a a ( 1)n 1
— (O[’ 11 2)(]’..-,(0[116 1 )q)
B (O‘l ap ™ afte, a{lZ;a—nHak)".
n—1,_ n—1,
Therefore Gy is cyclic with (0417 a7, ot all_[k:zl( 1) k> as a generator. [

There are many non-degenerate invertible singularities that are reducible. These
singularities are sums of loops and chains. Gy is a product of the cyclic groups for

axiom 8.

16
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2.3.1 Orbifold Example )3

The charges for Q2 = 2® + xy* + yz? are ¢, = % qy = %, q. = % Therefore

For the orbifold B-side we will need to know the index of (.J) in the maximal symmetry
group of Q2. In order to find the maximal symmetry group we consider Gg,, =
((a, 8,7)) such that (ax)® + (az)(By)* + (By)(v2)* = 2° + zy" + yz*. Thus we have
o = aft = fy* =1 and Go,, = (7*,77%,7)) = Zay when 4 =1

In order to find the fixed locus of J* we consider what variables are fixed for k €
Zoy = {0,1,2...,23}. Everything will be fixed for k& = 0 since J° = (1,1,1). When
k = 6 we have J% = (1,1,€°™), so only the z and y values are fixed. Following this

pattern for all values of k we get the following fixed locus

C* k=0
C:2 k=6
FixJ* = { i
C, =3,9
\ 0 otherwise.

Restricting ()2 to the fixed locus gives us

oyt +y2? k=0

3 + ay? k=6
Q2,0|Fixsr = p 50

0 otherwise.

\

for these values of k gives

17
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2 2 .3 2 2 .2 .22 2 _
1z, 2% y,y°,y°, 2, 2%, 2y, vy, x y,my,xz,mz) k=20

Qlpisr = $

4
(
(1,2, 22, 9,92, v%, vy, xy?, 22y, 2%y?) k=6
(1,2) k=3,9
(

\ 1) otherwise.

In order to find (J) invariants we consider 'y z*dx Ady Adz. This element is invariant
if and only if £+ 4+ 26 41414 5 — 0mod 1. Similarly the element z'y’dz A dy
is invariant if and only if % + % + % + % = 0 mod 1. So from the sector k£ = 6 we get
the invariants 1%eg and xyes. The element 1 in each k sector will be expressed as ey.
For the sectors k = 0, 3,9 there are no invariant elements. For all other k-sectors the

only invariant element is e,. Thus this gives us our table of elements

k 11211415 6 8|10 | 11

11 3 4 7T 5 1 7

degyy Ol% 5|3 66 Llgla |3
Invariants €1 | €2 | €4 | C5 y3€6, TYEg | €7 | €8 | €10 | €11

Table 1: Q2 example for table of A side elements.

The only nonzero correlators by Axiom 1 are these the following.
Concavity axiom:

(617617611>7 <€1,67,€5>, <61768ae4>; <€1,€10,€2>, <€10;687€7>7 (67676> all equal L.

Pairing axiom:

<617 y3€67 y366> = _411

(e1, zyeq, Tyes) = %

Index zero axiom:

(610, €10, 65) = -2

18
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Thus using these correlators we can compute all of the multiplication for this ring.
Since e; = 1 is the identity in the ring multiplication with e; is trivial. The upper-half

multiplication table is given as

€1 €ip €s €7 ITYEg 3/366 €5 €4 €2 €11

€1 |€1 €10 €3 €7 TYEg 3/366 €5 €4 €2 €13
€10 —2e; e5 ey 0 0 —2e5 0 e O
€g 0 €9 0 0 0 €11 0 0
€7 0 0 0 €11 0 0 0
Tyeg Sen 0 0O 0 0 0
yies —er 00 0 0
es 0 0O 0 0
ey 0O 0 0
€9 0 0
€11 0

Table 2: ()2 example for multiplication table of A side elements.

Now we will construct the Orbifold B side. We can easily see that QF o = 2®y+y*z+2°
and its maximal symmetry group is also G, | = (o, a ™%, a'?)) = Zy, where o*! = 1
The group K by which the B side is orbifolded must be of order |Gy : (J)] in G%,
and also in SL3(C). Since Gg,, = Zyy and (J) = Zyy, [Gg,, : (J)] = 2. Therefore
one such K is K = ((a'?, a'? 1)) = ((8,,1)) where % = 1. For notational ease we

denote K as K = (m).

Computing the fixed and Milnor ring locus in a similar way as before we get

_ C? k=0
Fixm"® =
0  otherwise.

(Lo, 2%y, 9%, 0%, 2, xy, oy, oy, vz, yz, 42, vP 2, ayz, wyPz, ay®z) k=0

Q | Fixmk —

(1) otherwise.
ce we get the following elements in Table 3 to be invariant.

19
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k 0

1 7 1 5 3 2 11 7
degW 0’2’1274’12’473’12’6

invariants || by, 2bg, 22bg, y*bo, TYbo, y>2bo, TY>by, TY2by, TY> 2bo

S~

Table 3: Q29 example for table of B side elements.
Let by represent the element 1 in the respective k sector.
Now for the B side multiplication, since by is the identity in the ring its multiplication

is trivial. In the Orbifold B-model multiplication section we already walked through

a multiplication example for QZT’O. Following this same process for all pairs we get

bo  y?by ayby 2 by x%by xy3by  yPzby  ayzby  wyPzby

bo |bo y?by ayby 2 by x2by xyby  y?zby  ayzby  xyPzby
y2by —2zby  xyPby  y?zb 0 0 —2xyzby 0 213 2by 0
xybg 0  xyzby 0 0 0 xyPzby 0 0
20 0 0 0 2y 2b 0 0 0
by B zy3zby 0 0 0 0 0
R —4xy32b 0 0 0 0
x13bg 0 0 0 0
y*2bo 0 0 0
xyzbg 0 0
213 2by 0

Now the FJRW ring for ()2 and the orbifold ring for Q;O are isomorphic as vector
spaces just by sharing the same dimension and corresponding degrees. Therefore if
they were to have the same multiplication table that would be enough to prove they
are isomorphic as rings. So instead of having b; and 22, as elements we can scale

L22by giving the upper half of the multiplication table as seen

20
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in Table 4.

bo by  wyby 20 #ﬁbl }lmzbo x1°bg y2zby  wyzby xy3zby

bo bo  y*by  wyby 20 #ﬁbl }lmzbo x1°bg y2zby  wyzby xy’zby
y2bo —2zby  xyPby  y2zbo 0 0 —2xy2by 0 ayizb 0
xyby 0  axyzby 0 0 0 x132by 0 0
20 0 0 0 213 2by 0 0 0
41\/#% by 1—12 x1zb 1 0 . 0 0 0 0
37°Dg —37y°2bg 0 0 0 0
x13bg 0 0 0 0
y22by 0 0 0
xyzbg 0 0
213 2by 0

Table 4: ()2 example for multiplication table of B side elements.

Since the FJRW ring A model multiplication table and the Chiral ring B-model

multiplication table match exactly the rings are isomorphic.

2.4 Format of results

For each singularity, the information will be displayed in the following pattern:

e The name of the singularity will be given and also the polynomial that defines

it, the Jacobian ideal, the weights associated to each variable, and the central

charge. Also given will be the symmetry group used in the construction, (.J).

e The fixed locus will be described for each group element.

e A basis for the Milnor ring of W restricted to each fixed locus will be given.

e Sectors with non-trivial J-invariants will be displayed in a table including the

invariant elements and their WW-degrees.

e Values of the three-point correlators that are not required to vanish by Axioms

21
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from the axioms alone. These will be given variable labels.

e Multiplication table for both the A-side and B-side singularities will be given.
For many singularities a system of equations will be shown in order to match
these multiplication tables for an isomorphism. The solution to the systems will

be given.

3 Computations

The examples are taken from the unimodal and bimodal singularities listed by Arnol’d.
Many of these singularities are quasi-homogeneous only after fixing specific parameter

values. This will be done without further comment.

3.1 Unimodal singularities
3.1.1 P

Py is normally the singularity 23 + y® + 23 + axyz however this is not invertible. We

will continue for the case where a = 0 making Py invertible.

A model: Py :a® 412 + 23
J = (322, 3y%,32%)

1 1 1

qx=§,qy=§,q,z=§

Gp, = ((a, 8,7)) = Z3 X Zs x Z3 when o = 53 = 73

0  otherwise.

22
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(L,z,y,z,zy,x2,yz,xyz) k=0

Q|FixJk =
(1) otherwise.
k 0 11]2
degy, 1,1 012
invariants || eg, xyzeg | €1 | €

Table 5: Py A side elements.

non-zero correlators:
Concavity axiom:

<€1, €1, €2> =1

Pairing axiom:

(e1, 0, TYyzeq) = 2%

€1 €y TYzey €9
€1 €1 €y XYzep €

N

€0 0 %762 0
TYzeq 0 0
€2 0

Table 6: Py A side multiplication.

B model: P} : 23 + y3 + 23
J = (32%,3y* 32%)

1 1 1

(Ingy%zg,(h:g

2 1,a),(a? a,1)) = (m,n) when o® = 1
23
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Q | Fix(mknd) —

( C* k=0,7=0

C, k=0,7=1

C., k=0,7=2

C, k=1,7=0

Fix(mn’)=q 0 k=1,j=1

C, k=1,j=2

C, k=2,7=0

C, k=2j=1

\ 0 k=2,7=2

(

(Lz,y, 2,2y, x2,yz,2yz) k=0,7=0
(1,2) k=0,j=1
(1,2) k=0,j=2
(1,7) k=1,7=0
§ (1) E=1,7=1
(1, z) k=1,j=2
(1,9) k=235=0
(1, ) k=2j7=1
) k=2j=2

k,j 0,0 1,112,2

degy, 0,1 % %

invariants || by o, xyzboo | b1,1 | b2,2

Table 7: Py B side elements.
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1

b0,0 bl,l 1944b2,2 xyZbO,O
T

boo |boo big  gombez  wyzbop

b1 0 2—17xyzb0,0 0
1
To1102.2 0 0
xyZb(),o 0

Table 8: Ps B side multiplication.

3.1.2 X,

For Xy : 2* + y* + bx?y?, Xy is not invertible as written so we must have b = 0.

Amodel: Xy : 2% 4+ y*

J = (42° 4%
1 1
qx_47Qy_ 4

Gx, = (o, ) &2 Zy x Zy when o* = g* =1

2 _
FixJ* = © k=0
0  otherwise.

<1737>x273/7 y2=553/7$y2=5523/7 $2y2> k = O

Qlpixst =
(1) otherwise.
k 0 11213
degy, 1,11 01112
invariants || x2eg, y%eq, xyeo | €1 | €a | €3

Table 9: Xy A side elements.

non-zero correlators:

Concavity axiom:

(e1,e1,e3) and (e, ea, €2) both equal 1.

(L)
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(e1, T%eq, y?eo) and (e1, xyeq, Tyey) both equal %.

€1 $2€0 y2€0 TYey €9 €3

er | er ey yley Tyey es e3
z2eg 0 1—1663 0 0 O
y2eo 0 0 0 0
TYeq %63 0 O
I es 0
€3 0

Table 10: Xg A side multiplication.

Bmodel: X{ : 2* 4+ ¢*

J = (42, 4y°)
1 1
qz_47qy_ 4

K = {m)={(a* ) when o' = ' =1

_ C* k=0
Fixm" =
0  otherwise.

(1,2, 22,9,y xy, zy?, 2%y, 2%y?) k=0

QlFixmk =
(1) otherwise.
k 0 11213
degyy, 0, %, 1 % % %
invariants | bg, xybo, 2°y?bg | by | by | bs

Table 11: Xg B side elements.
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b() ;b b3 24\/—b2 .’L‘yb() x2y2b0

24f/§ 1
1b0 bo 57501 1 23 ) 24sz xyby 2%y by
b3 0 0 0 0
ﬁbg EIE y2b0 0 0
xybg z*y*bo 0
x2y%by 0

Table 12: Xy B side multiplication.

3.1.3 Qy

A model: Qo : 2 +9° + y2?

J = (327, 5y* + 2%, 2y2)

1 1 2

szgv%j:g:(k:g

Go, = ((a,fy_2,fy)> > Zso when o =419 =1

4

C? k=
N C, 3|k
FixJ" = <
(sz 5|k
\ 0 otherwise.

<1xyy vyt 2wy, oy wy? oyt ez) k=0
(1,2) 3|k
Q|FixJk =
(1, NTNARTANY 5|k
\ (1) otherwise.
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k 1214 5 718 10 111314
28 8 22 22 [§ 16 4 4 2 2 34
degyy 0|15 | %% |31 5z I T

invariants || e; | ea | es | y2es, zes | €7 | es | y2eio, z€10 | €11 | €13 | €14

Table 13: Q12 A side elements.

Potential non-zero correlators:

Concavity axiom:

(61761,614% (61768,6’7), (61,6’11,64% (617613,€2> <€13,€11,€7> all equal 1

Pairing axiom:

<617 92610, y265> = %

(e1, ze1o, 2e5) = —%

Correlator equation:

—2 = —2(ey3, €13, 2e5) (€13, 2€10, €3) + 10{e13, €13, yes) {e13, Y210, €5)

Correlators we cannot determine with axioms alone:
€13, €13, Z€5> =
€13, 2€10, €8> = Q2

2 _
€13, €13, Y €5> = as

2 2 _
€11, Y7 €10, Y 610) = a3

2 _
€11, 2€10, Y 610> = Qg

(
(
{
(e13,9%€10, €8) = a4
(
{
(

€11, 2€10, Z€10> = a7
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[\
Nej

€1 €13 €11 Z€10 y2€10 €3 €7 Z€s Y“es €4 € €14

€1 €1 €13 €11 €10 ?J2610 €8 €7 <€y ?J2€5 €4 €2 €14
€13 —2a,ze19 + 10asy?e;p e aser aser —2aszes + 10asy%es €4 ares  ases 0 ey 0
e 0 —2arzes + 10agy?es —2agzes + 10asy’es 0 e 0 0 e4 0 0
ze1p arey ageq a9€s 0 —%em 0 0O 0 O
y2eio asey ases 0 0 e 00 0
€g 0 €14 0 0 0 0 0
er 0 0 0 0O 0 O
zes 0 0 0O 0 0
y2es 0 0 0 0
€4 0O 0 O
€9 0 0
€14 0

Table 14: Q12 A side multiplication.
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B model: QT : 23 + ¢z + 22

J = (3%, 5y 2, y° + 22)

1 1 1

qy::§7Qy:1_Oan:§

K = (m) = (1,8, 3)) when 81° = 1

Fixm"® =

(Loz,y, v, vyt 2, ey, wy?, oy, ayt vz, yz, vP 2, vz, cyz, oz, oyPz) k=0

Q'Fixmk =
(1,z) k=1
k 0 1
I T2 8 34 1T 417 71T
degyy 0.5 5 5 157 5 50 157 157 15 515
invariants | by, bo, y%bo, y*bo, Ty%bo, Ty by, y2bo, > 2bg, TY2by, XY>2by | by, by

Table 15: Q)12 B side elements.

For Table 16 we will let

a = eb + fytby
B = gbi+ hy'bo
v = axb + bry*by

0 = caby + dzyby.
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bo  y*by xbg a 3 xy%bg yzbo ol 0 y3zby  wyzby  wyPzby
bo bo y2bg xbg 16} xy°b yzbo ¥ 0 3 2bg xyzby xyzby
y2bo rat 210 —2fyzbg —2hyzb —Sy+  yPzby  —2bxyzby —2dxyzbg 0 ayzb 0
ehfgfﬂ adicbe
by 0 defeqyt dohery 0 zyzhy 0 0 w2y 0 0
af—ebe ah—gbe
ad—cb ad—cb
a (30e% — 2f2)y32by  (30eg — 2fh)y3zby  —2fzyzby 0 —sxy’zby 0 0 0 0
6] (3092 — 2h%)y32by  —2hxyzby 0 0 Txy’zhy 0 0 0
xy2b 0 x5 2b 0 0 0 0 0
yzby 0 0 0 0 0 0
N 0 0 0 0 0
0 0 0 0 0
y32by 0 0 0
xyzbg 0 0
213 2by 0

Table 16: Q)12 B side multiplication
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System of equations found by matching the multiplication tables:

a
a2
as
Gy
as
Qe
ar
30ae — 2fb
30ce — 2df
30ag — 2bf

30cg — 2dh

9
=7
2(eh — gf)
c
—2 = 2(ad — cb)
e
Y P —
10(eh — gf)
a
=
h 10(ad — cb)
2 o2 ah — gb
3097 = 20" = 10(ad — cb)
af —eb dg — hc
—9fh = —
30cg = 2fh 10(ad — cb)  —2(ad — cb)
de — fc
2 _gp2_ _Ge—JC
30" =21 = S — o)
B 1
2
0
0
1
10

Solution to these equations in terms of the a;s:

401

2+/30as + 15a3

a1

2

a20a1

104/30as5 + 15a2
as

2

az\/30 x as + 15 * a3

6(11
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1
g = %\/30% + 15a2

Ay
h o= -2
2
With the relations:
a1 — 1
ag —= —————
5&4
w 2a1a0a5 — 2a5 — a’
6 =
2(11(14
a 2@%&%@5 — 4@1@2(1,5 — 2@2@2@1 + 2(1,5 + ai
7 prm—

2a2a?
3.1.4 Uy,

A model: Uyy: 22 + 9% + 24
J = (3%, 3y 42°)

1 1 1
Qx_37Qy_37Qz_4

GU12 = ((aaﬁ77)> = Z3 X Zg X Z4 when 0[3 :ﬂ3 :74 =1

p

C3 k=0
C2 3|k
FixJF={ ™ |
C. 4k
\ 0 else.

(
(1, m,y,2, 2% zy, vz, 022 yz,y2°, vyz, 2y2*) k=0

<17':E7 y? ':Ey> 3|k‘
(1,2,2%) 4k

else.
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k 1] 2 3 ) 6 7 9 10 | 11

11 5 5 4 7T 2 2 1 7

degW 0 6 3’3 3 6’6 1 3’3 2 3
mvariants || e; | es Tres, Y€z | €5 | T€g,Y€Eg | €7 | TEg, YEg | €10 | €11

Table 17: Uy A side elements.

Potential non-zero correlators:

Concavity axiom:

(e1, €1, e11), (e1,er,e5), (e1, €10, €2), (€10, €10, €5) are all equal to 1

Pairing axiom:

(e1,weg, yes), (e1,yes, Teg), (€1, yeg, vez) are all equal to %

Correlators that cannot be computed with the axioms alone:

€10, L€9, .’IZ'€6> = ai
€10, Teg, Yes) = A
610;y€9,$€6> = as

) =

Tey, Teg, e7) = as

T€g, Y€y, 67) = Gg

(
(
(
(€10, ye9, yeo
(
(
(

Yeg, Yeg, 67> = ar
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w
ot

€1 €10 Yeg gge) €7 Yes Teg €s Yez xez €3 €41
€1 | €1 €10 Yeg Zeg €7 Yee ZeEg €5 Yyes Tez €3 €11
€10 er  9asyes + 9asres 9a1yes + aszeq 0 asyes + 9aysres 9aiyes + 9azres es 0 0 e1 O
Yey ares ages agyes + 9arxes a4€s aseés 0 0 %ell 0 0
Teg ases asyes + 9agres o€s aiés 0 %en 0 0 0
er 0 0 0 en O 0 0 O
yeg 0 sen 0 0 0 0 0
Teg 0 0 0 0 0 O
es 0 0 0 0 O
yes 0 0 0 0
xes 0 0 0
€9 0 0
€11 0

Table 18: Uy A side multiplication.
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B model: UL : 23 + 33 + 2*
J = (32%,3y°,42°)

1 1 1

(Ix:g"Jy:g,q,z:Z

K = (m) = ((a%, 3,1)) when o* = §* =44 = 1

C® k=0
Fixm" =
C, k=1,2

(1, 2,9, 2, 2% 2y, vz, 022 yz, Y2, vyz, 2yz%) k=0

QlFixmk =
(1,2, 2% k=12
k 0 1 2
11217 1 75 1 75
degyy 04,35 12,6 301206 301206
invariants || by, zbg, 2°bg, xybo, xyzby, TYZ2by | b1, 2b1, 2°b1 | by, 2by, 2%by

Table 19: U;y B side elements.

For Table 20 we will let

a = aby + bby

B = cby+db

v = ezby+ fzby
0 = gzby + hzby
n = i2%by + j2%by

w o= k2by +12%b;.

36

www.manharaa.com




by zbg a 3 22by ol 0 xyby n U xyzby Yz
by | by zby a 3 22bgy v [ xyby n I xyzby 1Yz
2bg 22D Z‘;:;’JIZ v+ Zg:g?'y-l- 0 ‘Z:f,f n+ if:f,f n+ xyzby 0 0 xy22by 0
eb—a, ed—c if—je ih—j
he—gf‘g he—gj;e z{—]]k/“l’ il—yj'lg'u'
a 24abzyby  12(ad + be)xyby ‘Z‘ll:f,i’ n+ 12(af + be)zyzby 12(ah + bg)zyzby 0 0 s1yz%bg 0 0
ib—ja
il—;k H
1G] 24cdxybg %:f,‘:n—i— 12(cf — de)xyzby 12(ch + dg)xyzbg 0 s2y2>bo 0 0 0
id—jc
il ]]k H
22by 0 0 0 xy22by 0 0 0 0
%
v 0 %xyzzbo 0 0 0 0 0
0 0 0 0 0 0 0
xybg 0 0 0 0 0
n 0 0 0 0
1 0 0 0
xyzbg 0 0
ryz2by 0

Table 20: U5 B side multiplication.
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System of equations found by matching the multiplication tables:

ay

a2

as

Gy

as

Qg

a7

12(aj + bi)
12(al + bk)
12(cj + di)
12(cl + dk)
24ef

24qgh

12(eh + fg)

Solution to this system in terms of the a;s:

hc — gd gl — kh
- — 12
She —gf) Ol — k) T
ed — cf el — kf
- —12(cf +d
She — o) ~ O jk) _ L2\eS + de)
ha — gb th — jg
- — 12
She —gf) Ol — k) 00
eb—af if —je
_ — 12 b
She —gf) ~ I jk) — 12aS +be)
ol — kd
Ued = — "0
A= 5= m
al — kb id— je
12(ad +b¢) = 50 =735 = S = 7A)
b — ja
2Uab = —2— I
b= SR
0
1
9
1
9
0
0
0
1
9
_ 93
T 1o
b = 9h(l4
_ 4
“ 7 1o
d = 9ha2
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108h
f =0
g =0
h = h
. ay
1 =
972h(ara4 — azaz)
_— hay
J 9(&1&4 — a3a2)
ko= =
972]7,(&1(14 - a3a2)
hag
I = —
9(@1@4 — a3a2)
With the relations:
as = 18@2@1
ag = 9a4a1+9a3a2
ary = 18&3&4

3.2 Bimodal Singularities

3.2.1 Zyg

A model: 7y : yz® +y7

J = (32y,2" + 7y)

2 1
qx_77qy_7

710 — <(04704_3)> >~ 7o, when ol =1
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2 _
FixJ* = ©kE=0
0  otherwise.

(1,z, 2% y9% v, v, v°, o8, oy, oy?, oy, oy,

Qlpixst = § a1, 2% k=0
(1) otherwise.
k 0 1121314516
8 8 8 G242 [0 I6
degy/ 7707 Olz 717l 7]7
invariants || x2eg, yteg, xy%eg | €1 [ ea | €3 | eq | €5 | €6

Table 21: Z; A side elements.

Potential non-zero correlators:

Concavity axiom:

<61761766>7 <617627€5>7 <€17€4763>7 <€4,€2,€2> all equa'l 1.

Pairing axiom:

W=

(e1,x%eg, Teg) = —

(61, xyze()a y460> = %

Correlators that cannot be computed from the axioms alone:
<€47 €4, x260> = ax

(64, €4, y460> = Q2

(64, €4, 5709260) = as

40

www.manharaa.com




—3 = —3{ey, 4, 2%e0)? + 42(ey, €4, y'eg) (ey, 4, 1Y eq)

el €4 es x%e0 wY?er yleo es es eg

er | e €4 es %o TY’ey yleg es es eg
ey —3a17%ey + 2lasxy’ey + 2lasytey es ares ases ages 0 eg 0
€9 €3 0 0 0 €g 0 0
x%e — %eg 0 0 0O 0 O
xy%e 0 e, 0 0 0
yteo 0O 0 0 0
es 0 0 O
€3 0 0
€g 0

Table 22: Z; o A side multiplication.

B model: Z{ : * + xy”
J = (32 +y", Tay)

1 2

Qx:§;Qy:2—1

K = (m) = ((8",5")) when 5! =1

C? k=0
Fixm”® =
0 k=12

(1, 2%y, v%, 0% vt v°, o0, oy, oy?, oy, ayt oy,

Qlrixmt = 22y, 222, 228, a2yt 22y k=0
(1) k=12
k 0 112
713568 11
degy/ 0,2, %% 7 %% A
invariants || bo, y>bo, y°bo, Tybo, xy*bo, 22y*by, 22y by | by | by

Table 23: Z; B side elements.
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For Table 24 let

a = aby +bby + cy6b0
ﬂ = dbl + 6b2 + fy6b0

v = gby + hby +iy®hy
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9%

bo ¥ bo zybo o 5 v zy'bo  2*y*by 2*y’bo

bo | bo y’bo zybo o 5 v zy'bo  x*y’by 7y bo
y3by —eegTh d—_ﬁ;rh;;g e wythe —3ca’yby —3fx’y*hy —3ixty’by 0 2’y’hy 0

—ceg+chd—fZ¢:—|_g—£gg+iae—ibd ﬁ—i_
—ceg+chd—fha+fbg+iae—ibd7

xybo 22320 0 0 0 2?y°by 0 0
a —52%°by 0 0 0 0 0
3 0 = x2y5by 0 0 0
N 0 0 0 0
xy*by 0 0 0
x%9%by 0 0
225b 0

Table 24: Z; ¢ B side multiplication.
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System of equations found by matching the multiplication tables and correlator equa-

tions:

399ab — 3¢ = —%
%(ae +bd) —3cf = 0
399
T(ah +bg) —3ci = 0
399de —3f* = 0
399

399gh — 31> = 0

-3 = —27c +378fi
—eg + hd
ap = —3c = , ,
—3(—ceg + chd — fah + fbg + iae — ibd)

) ah — bg

ag =—31 = — . .
21(—ceg + chd — fah + fbg + iae — ibd)

05— —3f — ae — bd

21(—ceg + chd — fah + fbg + iae — ibd)

Solution in terms of the a;s:

0 = a1ag9 — Qo
1197h
a1h+h
h =
a2
C —_— _%
3
J - (ag —1)?
~ 16758h
e — h(a1+1)2
B 14a3
_ %
Fo= 3
2
_ a3
9 = T1o7h
44
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With the relation:

a? -1

14@2

3.2.2 Qs
A model: Qg : 2% + zy* + y2?

J = (32% +y* day® + 27, 2y2)

1 1 )

szquy:qu,z:ﬁ

Go,o = ((7*,77%,7)) = Zys when v** =1

C3 k=0
2 _
Fix.J* = { Ca k=0
C. k=39
\ Ootherwise.

Qlpisr = $

45
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k 11214]5 6 8|10 | 11

11 3 4 T 5 1 7

degw O |5 |5/5] g |[L]G)3 |3
Imvariants || e; | es | €4 €5 ’y366, TYeEg | €7 | €8 | €10 | €11

Table 25: Q2 A side elements.

Non-zero correlators:

Concavity axiom:

<€1,€1,€11>, <€1,€7,€5>, <617€87€4>7 <€176107€2>3 <€10a687€7>7 <67676> all equal L.

Pairing axiom:

(e1,y%e6, yeq) = —1

<617 TYEq, 517y€6> = %

Index zero axiom:

(61o, €10, 65) = -2

€1 €ip €g €7 TYEq y366 €5 €4 €2 €11

€1 |€1 €10 €3 €7 TYeEg y3€6 €5 €4 €2 €11
€10 —267 €5 €4 0 0 —262 0 €11 0
€ 0 €9 0 0 0 €11 0 0
€7 0 0 0 €11 0 0 0
TYEg %611 0 0 0O 0 0
yieg —2e1 00 0 0
€5 0 0 0 0
ey 0 0 0
€9 0 0
€11 0

(2,0 A side multiplication.
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B model:Q{O cxly +yte + 22

J = (32%y,2° + 4y°z, y* + 22)

7 1 1

:ﬁa%l:_aq,z:_

e 8 2

K = (m) = (o, a,0) when o = 1
C? k=0

Fixm”® =
0  otherwise.

(1,2, 2%y, 9% 3, 2, zy, ay?, oy, vz, yz, yP2, vz, ayz, oy’ z, oyPz) k=0

QlFixmk =
(1) otherwise.
k 0 1
degyy 0,5, T30 1 130 1030 1206 iz
invariants || by, zbg, 2bo, y*bo, xyby, y* zby, Ty>by, TY2bo, TY>2bo | by
Table 27: Q2 B side elements.
bo by wyby éllﬁbl 22%by xy3by yPzby  ayzby  wyzby
bo |bo ybo wyby 2o Allﬁbl 177Dy xyby yPzby  ayzby  wyPzby
y2bo —2zby  xyPby  y2zb 0 0 —2zy2by 0 x5 2by 0
xyby 0  xyzby 0 0 xyPzby 0 0
20 0 0 0 213 2by 0 0 0
4—\}51)1 Sayzby 0 0 0 0
122 —1xy’zby 0 0 0
213 0 0 0
y?zby 0 0 0
xyzbg 0 0
213 2by 0

Table 28: 2 B side multiplication.
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3.2.3 S

A model: Sig:zz? +y2*+¢°

J = 22z, 2% + 5yt 2% + 2y2)

3 1 2

szﬁaqy:gaq;::g

GS1,0 = <(O[, 0547 04_2)> 2 799 when a0 =1

C* k=
FixJ* = ¢ €2, 5k

0 otherwise.

)
(L, 2% y,9% 9%y 2, oy, ay?, oy, 2y, 2%y, 2%y®) k=0
Q'FixJk = < (1,3/, y27y37y472> 5|k
\ (1) otherwise.
k 1121314 5 6171819
g8 7 5 6 T 21312
degwy O] 5|5]/5] 55 |5|5.5|3
invariants €1 | €2 | €3] €Eq y265,265 €6 | €7 | €8 | €9

Table 29: S; A side elements.

Potential non-zero correlators:

Concavity axiom:

<617 €1, 69>7 <617 €6, 64)7 <€17 €7, €3>, <617 €s, 62>7 <687 €7, 66>7 are all equa‘l to 1.

Pairing axiom:

<617 92657 3/2€5> = %
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(e1, ze5, ze5) = —%

Index zero axiom:

<€7, er, €7> - _2

Correlators we cannot compute with the axioms alone:
(es, es, 2€5) = a1

<687 €s, y265> = Q2

Correlator equation:

—2= _2<€87 €s, Z€5>2 + 1O<68; €s, y2€5>2

€1 €s €7 €6 Z€5 y2€5 €4 €3 €3 €9

€1 | €1 €s €7 €6 <€5 9265 €4 €3 €3 €9
es —2a,zes + 10asy®es  e4 e3 ajes azes 0 0 ey O
er —263 €9 0 0 0 €9 0 0
€ 0 0 0 e 0 0 O
zes —%69 0 0 0 0 O
y2es 1—1069 0O 0 0 O
ey 0O 0 0 O
es 0 0 O
€9 0 0
€9 0

Table 30: S;o A side multiplication.
B model:S1 o : 22 + y2° + xy?

J = 2z +y?, 2° + 22y, 5yz*)

1 1 3
Qx:—7Qy:_7Qz:2—O

2 4
= (m) = (1,3, 3) where 3* =1
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Q'Fixmk = 4

;

C* k=0

i C, k=2,6,10,14,18
Fixm"® = <
C:, k=4,812,16

\ 0 otherwise.

’
2 .3 .4 2 3 2 3
<].,£E,y,Z,Z YRR TY, X2, TZ™, X", Y=, Y==, Y=~

ryz, vy2?, ayz?)

k=0

Table 31: S; B side elements.

50

() k=26,10,14,18
(1,2,9) k—4,8,12,16
L (1) otherwise.
k 0 1
T3 3 90 62 7 4 3
degy 0,3 16:5 1005052100 & 5
invariants || 1, z, 22, 2%, vyz, 2y23, yz, 23, 02 | 1
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bo 22by yzby xby  aby +bz*by cby +dztby  yz2by  x2%by  xyzby  xyz3by

bo bo 22by yzbo xby  aby + bz%by cby +dz'by  y2iby  x2?by  xyzby  wYZby)
22by —<—(aby + bz"by) + 5= (cby + dz*by)  y2bo  yP2Pby  —2bxyzby  —2dwyzby 0 0 xy23by 0
yzbg —2x2%by  wyzby 0 0 0 xy23by 0 0
xbg 0 0 0 xy23by 0 0 0
aby + bz1bg —sxyz°by 0 0 0 0 0
cby + dz*b, Txyz2hy 0 0 0 0
y23hy 0 0 0 0
x22b 0 0 0
xyzbg 0 0
ryz3by 0

Table 32: 51 B side multiplication.
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System of equations found by matching the multiplication tables:

c
- 9=
“ 2(ad — bc)
ay = —2d= ¢
2 ~ 10(ad — be)
170 9 1
—a® =2 = —=
3 ¢ 2
170
TGC — 2bd = 0
170 , 9 1
—c=-2d" = —
3 ¢ 10
—2 = —8b* + 40d*
Solution in terms of the a;s:
0 = —tan/5l
Y
[45]
b = ——
2
o = \/5_1a1
B 170
a2
d = ——=
2

With the relation:

3.2.4 U

A model: Uyg : 23 + 222 +9°

J = (32% + 2%, 5y*, 2z)

1 1 1

%:257%:3,%:5

u <(7_27ﬁ7 7)) = Z30 when 55 = 76 =1
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(

C* k=0
(CZ

Tz

3|k
c, 5k

FixJ" = ¢

0 otherwise.

\

(
2 2,3 2 3 .2 2,2 ,.2,3
<1’x7x7y7y 7y7z7xy7$y 7xy7xy7xy7xy7
2 3 —
yz,y°2,y°z) k=0
OQlpixsr = § (12,22, 2) 3|k
2,3
(Ly,v%,9°) 5|k
L (D) otherwise.
k 112 3 4 6 718 9 11 12 13 | 14
de 0B Z 2 [S| 22 [Z[32] BE |1 6 16 T 38
gVV 15 157 15 5 373 5 15 157 15 3 157 15 5 15
invariants €1 | €2 | X€3,2€3 | €4 | TEg,Z€Eg | €7 | €8 | LEg, Z€g | €11 | TE12,Z€12 | €13 | €14

Table 33: Uy A side elements.

Potential non-zero correlators:

Concavity axiom:

(61,6’1,614), (61764,6’11% <€1,€7,€8>, (617613,62% (67,67,6’2), (67,6’137611> all equal 1.

Pairing axiom:

(e1,xeq, weg) and (e, wejq, xes) both equal %.

(e1, zeg, zeg) and (e, zeja, zes) both equal —%.

Correlators we cannot compute with the axioms alone:

(67, T€g, 1363) =
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67,93612,35612) = as
€7, Te12, 2€12) = a4
e, 2€¢, TE3) = aj
e, z€6, 2€3) = ag

€7, 2€19, Z€19) = Q7

T€g, €13, 2612> ag
T€g, L, 64) = aio
Teg, 2€g, 64) = a1
2667613,35612) = Q12

Z€6, €13, 2612> = 13

{
(
{
(
(
(weg, €13, TE12) = ag
(
(
(
(
{
(

Z€6, €6, 64) = daiq

R :MlJLi'.Ll ;
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€1 e7 Z€g Teg €13 Z€12 HAAD) €4
€1 €1 e7 Z€g Te€g €13 Z€12 HAAD) €4
er €13 —2@62612+ —2asze10+ €4 —20,7263—|— —2CL4263+ 0
6@51‘612 6a1$€12 6@41‘63 6(1,3$63
zég aj4€11 ayer —2a13ze3+ a13€3 1262 —2a13ze6+
b6ajazes 6ai1xreq
Teg a10€11 —2a9ze3+ [026Y5) ageo —2@112’66+
bagxes 6agres
€13 0 —2&13269+ —2&12269+ 0
bagreg 6agreg
Z€12 areg aq€eg 0
TE12 ases 0
€4 0
€11 zes xres €9 Zeg Teg €g €14
€1 €11 zes xres ()] Z€g Ty €g €14
€7 €9 —20,6266+ —2a5ze6+ €g 0 0 €14 0
baszeg 6azeg
zeg | 0 ageés ases 0 —%614 0 0 0
zeg | O anes aes 0 0 %614 0 0
€13 € 0 0 €14 0 0 0 0
ze | 0 —iew 0 0 0 0 0 0
T€12 0 0 6614 0 0 0 0 0
€4 €14 0 0 0 0 0 0 0
ein | 0 0 0 0 0 0 0 O
zeés 0 0 0 0 0 0 O
Tes 0 0 0 0 0 O
€ 0 0 0 0 0
Zégy 0 0 0 O
Teg 0 0 O
€g 0 0
€14 0

Table 34: Ujg A side multiplication.
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B model: UL : 23y + y? + 2°

J = (szy, 23 + 2y, 52%)

1 1 1

Qx:67Qy:§7Qz:g

K =(m) = ((Oz15,a15, 1)) when ab=~"=1

e k=0
Fixm" =
C, k=1
2 2 .3 2 .3 .2, 2.2 2.3 2
(1,22 y, 2,22, 23 oy, wz, 2% 023, 222, 0222, 2223 yz, y2?,
OQlpixmt = § y2°, xyz, xy2?, 1y2°) k=0
2 .3 _
(1, 2,22, 2°) k=1
k 0 1
1o 0112325 I 1 316D T8 I
gw 1315151503015 157 157 157 157 15 30157 152 15
invariants || by, 22bg, zbg, 22bg, 23by, TYbo, T2 2by, ¥22%by, 12 23by, TY2by, TYZ2by, TYZ3b | b1, 2b1, 22b1, 2By

Table 35: Uyg B side elements.

For Table 36 let

a = aby + bz?b,
B = cby+ dz*by
v = ezb + fazbg
u o= gzby + ha’zb

n = i2%by +jx2z260
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§ = k2%b + 12%2%b,

e = mz’by + na’23by

v = 023b + px?ih,

b() Zb() (6% ﬂ 22[)0
bo bo Zbg (6] ,6 22b0
2bg 22b Z,’::;ZZ (ezby + fx?bo)+ Z;:?Z v+ 23bg
eb—af ed—cf
eh—fgH eh—fgH
« (10a® — 2b%)xyby (3ac — 2bd)xyby ‘;ll:]’?]fn+
aj—bi
ilj—jk 0
16} (3 — % —2d*)zyby ‘;’f:é‘?gn—i—
ik—jc6
iA—jk
Z2b0 0
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v ft 2’y ayby n

bo gl Y 2%y xybo n
I—k I—kh .y

2bg eil.}j,f’n-i- gl_zjk.n-l- 0 xyzby i
if—je ih—jg mj—in
il—jk(s il—jk6 pm—ond}

a | (10ae — 2bf)xyzby  (10ag — 2bh)xyzby ;ﬂ“—:‘:ﬁle—f— 0 (10ai — 2bj)xyz2by

mb—an
pm—on ¢

B | (10ce — 2df)xyzby  (10cg — 2dh)zyzby, =L e 0 (10ci — 2dj)xyz2bg

pm—on
md—cn
pm—on¢
22b, pp—;__%]; €+ pp—i__fﬁl e+ 0 xy22by 0
mf—en mh—gn
pm—onw pm—gnw
v | (10e? — 2f?)xyz2by  (10eg — 2fh)xyz2by 0 0 —3xyz°by
U (109 — 2h?)zy2>by 0 0 0
23bo 0 xy23by 0
xybo 0 0
i 0
5 xyzby € v xyz2by  1yz3by
bo 5 Ty 2by € 0 xyz2by  1yzby
2bg p—zﬁ:‘;; e+ xyz2by 0 0 xy23by 0
ml—kn
pm—on
a | (10ak — 2bl)zyz?by 0 —3ayz3by 0 0 0
g (10ck — 2dl)zy=>by 0 0 sxyz*by 0 0
22by 0 xy23by 0 0 0 0
- 0 0 0 0 0 0
L sxyz3by 0 0 0 0 0
23by 0 0 0 0 0 0
xybg 0 0 0 0 0 0
" 0 0 0 0 0 0
) 0 0 0 0 0 0
xyzbg 0 0 0 0 0
€ 0 0 0 0
(8 0 0 0
xy22by 0 0
xy23b 0

able 36: U;g B side multiplication.
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System of equations found by matching the multiplication tables:

—ed+cf — —ml+kn

N - = 10ck — 2dl
" 6(eh — fg) 6(—on + pm) ¢
0 = —dg+hc — —mj+in o
2 T leh—Jg)  Gcontpm) O
—ih + jg ) )
= ———= =309" —2h
" 6l — jk) 7
_if + je —kh + gl
o 6(il — jk)  —2(il — jk) Oeg —2f
—eb+af —ol + pk
- = — 10ak — 20l
as 6(eh — fg)  —2(—on +pm) a
—bg + ha —0j + pi o
B = = 10ai — 2b
Qg —2(6h — fg) —2(—0n _|_pm) Oas ¥i
—kf+el ) ,
= ————~ =10e" -2
W= e e 2
= —————=10cg —2dh = ———F—
h o — k)~ 6(—on + pm)
—kd + —mf +en
- T q0ce—2df = —— T
h e B A T
o = 102 — g2 — ——mdEen
6(—on + pm)
a;1 = 10ac—2bd = — mob+an od + pc
6(—on +pm)  —2(—on +pm)
—Zb+]a —oh +pg
= ————~ = 10ag — 20h =
" 6l = k) " —2(—on + pm)
—kb+ al —Of + pe
" 2=k~ g —2(—on + pm)
—ob + pa
— 10a% -2 = ——
a14 Oa —2(—on + pm)
10am — 2bn = _%

10a0 — 2bp = 0

10em — 2dn =

10co — 2dp =
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10ei — 2fj = —=
10gi —2hj = 0
10ek — 2f1 =

10gk — 2k =

= D

Solution to this system of equations in terms of the a;s:

as\/2(—5a,0ar + 5a3)

10a1v/—az7
p a13v2
2y/—az
_ /2(-5a,0a7 + 5a3)
N (VAT
d = ag\/§
1/ —ar
e = 0
1
f = —=sqrt—2a,
2
_ /2(-5a,0a7 + 5a3)
g = 60a1r/—ar
[ (14\/5
2y/—az
. 3a1a4\/§
i = —
2v/—az(—5a,0a7 + 5a?)
. V2
T W
- al\/TOW

24/ —5a,0az + 5a3
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a1agy/—2a7

m =
4y/=5a10a7 + 5ag(—asag + ara:3)
_ a1/ —2az
" 4(—asag + a1a,3)
0o = ayaizy/—2ar
121/ —5a10a7 + 5a3(—asag + aya;3)
p = asv/—2az

12(—asag + ara;3)

With the relations:

—ag + 6ayaq
g = —
20,7
36a2a? + a,0a; — a?
a —
’ 36(ara?)
—a13 + 6agas
g = ——
20/7
P 6asaiag + a0ar; — ag
; 6(a7a1)

3.2.5 Qi

A model: Q6 : $3+yz2—|-y7

J = (32%, 2% + T8, 2y2)

1 1 3

qx:g’qy:?qu:?

= <(O‘77_277)> = Z,o when o’ = 714
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(
C? k=0
c2, 7k
FixJ* = { Y |
C, 3k
0 else.
\
4
L,y v v vt v 0, 2 ey, oy, oy oyt oy g8, 02) k=0
Ly, v*v% vt v 2) 7|k
Olpisr = $
(1,z) 3|k
L (1) else.
k 112145 7 8110 11| 13 14 16 | 17 [ 19 | 20
de 0 38 1 10 [ 26 6 6 2 2 441 12 32 32 8 20 4 50
Sw 21 | 7 | 91 07 317 191 |7 21 21 7 121 | 7 | 91
invariants || e; | ex | es | e5 | yPer, zer [ es | eng | €11 | €13 | yeiq, ze1q | 16 | €17 | €19 | €20

Table 37: Q16 A side elements.

Potential non-zero correlators:
Concavity axiom:
<617 €1, 620)7 <€17 €sg, 613)7 <617 €10, 611>7 <€17 €16, €5>7 <€17 €17, €4>: <617 €19, 62>7 <6107 €y, 64>7

(eloa €10, 62>7 <6107 €17, 616>7 <6197 €g, 616>7 <€, €, €> are all equa’l to 1.

Pairing axiom:

<€1, y3€77 y3614> = ﬁ

<617 z€r, Z614> = _%

Index zero axiom:
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€10, €19, Z€14> =ay
€10, 2€7, 65) = Qg
€10, €19, Y 614) = as

€10, Y 67,€5> = Q4

619,y €7, 6’17> = Qg
3 3 _
€g,yer,y 67> = ar

3 _
€g,2€7,Y €7>—a8

{
{
{
{
(19, zer, e17) = as
{
{
{
{

€g, €7, 2’67) = Gy
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3 3
€1 €10 €19 €8 ze7 yer €17 €16 €5 €4 Z€14 Y14 €13 €2 €11 €90

3 3
€1 €1 €10 €19 €s zer yer €17 €16 €s €4 Z€14 Y €14 €13 €2 €11 €
€10 elg —2ai1zer+ ey €16 a4€16 es eq —2a9zeis+ €13 ajes ases 0 e es0 0

l4asy>er 14ay13e14
€19 —2616 €y a5€4 g€y —2a5ze14+ €13 —262 0 aje1; aszei; 0 €20 0 0
14a6y3614
€g 0 —2&92614+ —2a82€14—|— 0 €9 0 €11 0 0 €920 0 0 0

l4agy®ern  ldaryPery

zer 913 age1s a5€9 0 a92€11 0 —%620 0 0 0 0 0
D
= yieq areqs ages 0 ase11 0 0 ﬁego 0O 0 0 0
€17 0 €11 0 €920 0 0 0 0 0 0
€16 0 €920 0 0 0 0 0 0 0
es 0 0 0 0 0O 0 0 O
€4 0 0 0 0O 0 0 O
zeqy 0 0 0O 0 0 O
y3614 0 0 0 0 0
€13 0O 0 0 O
€ 0o 0 O
€11 0 0
€920 0

Table 38: Q16 A side multiplication.
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B model: Q% : 23 + y27 + 3>

j = <3$27 Z7 + 2y7 7yz6>

1 1 1

Qm:§7Qy:§aQZ:ﬁ

K =(m)={(1,7"",7*)) when o® =" =1

e k=0
Fixm" =
C, k=1
(12,9, 2,22, 23, 24, 25,28 w2, 22 023 22t 125 228,
OQlriamt =\ yz,y2%, y2°, yzt, y2®, xyz, xy2?, xy2®, xyzt, xy2°) k=0
(1,z) k=1
k 0 1
I (I IZ3 0 B L1560 25 715
gw '3 T 7 7021921021070 70 7 210 210 21 7021
invariants | by, xbg, 2°bg, 2*bg, 2°bg, 122y, 12 by, 125bg, y2bo, y2>bo, y2°bo, TYZby, TYZ by, TYZ by | b1, TbY

Table 39: Q)16 B side elements.

For Table 40 we will let

a = ab; +b2°,

B = cby + dz%by

v = exb + fr2by

n = gxby + haz%b
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by 2%by 2%y xbg a 3 x22by yzby
by | by 2°bg 24D xbg o 15} x2%by yzbo
2%y by —S-at x2%by —2byzbg —2dyzby x24bg y23by
adibcﬁ
24bg —2uyzby  x2tby —2by23by —2dy=3b he__gg 7Y+ y2°by
il
xby 0 ha-gb ;’;’y—i- he—9d Z?’y—k 0 xyzby
eb—af ed—cf
he— gf,'7 he— gfn
« (B2a® — 20%)yz"by  (B2ac — 2bd)yz"by  —2bxyzby 0
6} (1822 — 2d?)yz"by  —2dwyzby 0
x2%by 0 xy23by
yzby 0
x24by y23bo ~y n yzoby  wyzby wyz3by xy2°hy
bo xz4b0 y23bo v n yz°by  wyzby wyz’by xYy2°by
2%by g f7+ yz°by  —2fxyzby  —2hxyzby 0 ryz3by  xyz’by 0
el
24by | —2xyzby 0 —2fxyz3by —2hayz3by 0  ay2’by 0 0
xbg 0 xy23by 0 0 2y2°b 0 0 0
a —2bxy23by 0 —3xyz°by 0 0 0 0 0
B | —2dzyz3by 0 0 Ly by 0 0 0 0
x2%by 0 xy2°by 0 0 0 0 0 0
yzbo xy2°by 0 0 0 0 0 0 0
x24by 0 0 0 0 0 0 0 0
y23b 0 0 0 0 0 0 0
N 0 0 0 0 0 0
0 0 0 0 0 0
y2°by 0 0 0 0
xyzbg 0 0 0
xy23by 0 0
xyz°by 0

Table 40: Q)16 B side multiplication.
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System of equations found by matching the multiplication tables:

ay
¢5)
as
Q4
as
Qg
ar
as
ag
1—22(16 —2bf
%ag — 2bh
%ce — 2df
%cg — 2dh
—2

Cc

_of___°
/ 2(ad — bc)
g
—2=—"
2(he — gf)
o=
14(ad — be)
e
2 p—
d 14(he — gf)
g
) S —
2(he — gf)
e
Y P
14(he — gf)
ed—cf 182, 9
14(he — gf) 3 ¢ 2
eb—af  hc—gd
14(he —gf) ~ —2(he —gf)
ha — gb 182 9
——=—0a"—-2b
—2(he—gf) 3 "
1
2
0
0
L
14
—8fb+ 56hd

Solution of the system of equations in terms of the a;s:

1 2
@ 5460/9 + 273&2

a2

2
3ai/2a9 + a3

14a3v/273
Gy

2
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With the relations:

a

ar

as

21&3&4

2./546ay + 27302

a1

2

3a3a2

2,/546aq + 27302

as

2

Tasay + 1

a2
a1a4ag9 + 204 + Qag

7@2@3
2a1a9 + az
14@3
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